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DESIGN OF MINIMUM ENERGY DISCRETE-DATA CONTROL SYSTEMS

by

A. M, Revington and J. C. Hung

SUMMARY . )ég\

A procedure is developed for designing the minimum energy discrete-
data control of an n-th order continuous plant. The system is required
to reach a desired final state from a given initial state in N sampling
periods, with N> n. A very useful matrix, called derived matrix, is
developed, which expresses the relationship between the canonical vectors.

The minimum energy controller depends only on the derived matrix, a very
simple result. The importance of minimum energy control is discussed.

An example is given to demonstrate the method. ;15%2&;—‘
ppothos

INTRODUCTION

The availability of modern high speed digital computers as controllers
in a feedback control system demands a new approach to control system de-
sign involving discrete-data. In recent years considerable effort has
been expended on the optimum design of discrete-data control systems,
especially on time-optimal deadbeat controls.

For systems without saturation, Kalman and Bertram presented a very
elegant methodl, Kalman also proposed a method for saturating time-
optimal control?.

It is well known1 that for non-saturating time-optimal control an
n-th order system can be brought from an initial state to a desired final
state in n sampling periods or less. But for saturating control the re-
quired number of sampling periods is, in general, greater than n. Further-
more, the control is not unique. A unique control can be obtained by
imposing an additional constraint, for example, the so-called minimum
energy control.

In many practical problems, the system output is required to be error-
free after a finite period NT> nT, but the time-optimal response is not
necessary. In this paper a procedure is developed for designing the mini-
mum sum-of-input-squares, conventionally called minimum energy, discrete-
data control of an n-th order continuous plant preceded by a zero-oxder
hold. That is we want



N

E = 2: lm(k)’2 = minimum (1)
k=1

where m(k) is the system input during the period (k-1T, kT). The system is
required to reach the origin of the state space from a given initial state

in N sampling periods,

with N>n. A important matrix, called the derived

matrix, is developed, which expresses the relationship between the canoni-

cal vectors.

The minimum energy control depends on the derived matrix

only, which is in a very simple form and is easy to implement. An example
is given to illustrate the method. The method is not restricted by the

order of the system.
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The importance of this type of control is discussed.

SYMBOLS

n-vector whose components are aj, 35, -..., a

real constants
(N-n)-vector whose components are a 10 --cr Ay

n-vector representing the system state in the
canonical space C

real constants representing the components of ¢

n-dimensional canonical space of the system
sum of the squares of the system input steps
system transistion matrix

n-dimensional forcing vector of the system

derived matrix
Transpose of H

ij-th element of H

running indexes
system input during the period (k-1T, kT)
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m N-vector whose components are m(l), m(2), ....,
m(N)

n order of the system to be controlled

N number of sampling periods at the end of which the
system is required to reach its desired final state

Q nx(N-n) matrix whose columns are the canonical
vectors r T ceeey I

$ In+1’ Tnt2 » N

I i=1, 2, ..., N canonical vectors of the system

R nxn matrix whose columns are the canonical vectors
Il’ I?_, e I_n

-1 .

R inverse of R

5. i=1, 2, ..., n unit vectors of the canonical space

t continuous time variable

T Sampling period

X n-vector representing the state of the system in
the state space

X n-dimensional state space of the system

MATHEMATICAL FORMULATION

Consider an n-th order, linear, time-invariant, sampled-data system.
Let x(k) be an n-vector representing the state of the system at time kT,
where T is sampling period. The system state transition equation is

x(k+l) = g(T)x(k) + h(T)m(k+l) (2)

where G(T) is the nxn system transition matrix, h(T) is the n-dimensional
forcing vector, and m(k+1) is the constant control during period (kT,
k+1T). G(T) has the following properties.

G(tl+t2) = G(tl)G(tz) 3)
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-1
G (T) = G(-T) (%)
Define the canonical vectors of the system as
I; = 6 (D) = G-iDA(T) , i, 1, 2, .... (5)

5 .
For a controllable system™, we can choose the first n Li's to form a basis
for the n-dimensional state space X, i.e., any state x jn X can be expres-

sed by

x=) ax ®)

n
i=1

where ai's are real constants.

. . 2 . . .
The control sequence for time-optimal control™ without saturation is
given by

m(k) = -ak k=1, 2’ ------ » N (7)

This control is unique. As a consequence, the input energy, Eq. (1), is
unique for a given initial state.

Very often, time optimal control is unnecessary, rather the system is
required to reach the desired final state in finite time, say, N sampling
periods with N>n. Under this situation each state x in X can be expres-
sed as the linear combination of N canonical vectors, i.e.,

(8)

N
X = a, r.
i~i

i=1

and the control sequence is given by

m(k) = -3, k=1, 2, ...... » N )

Note that in Eq. (8) only n of the N r,'s are linearly independent. Hence,
by choosing the a;'s differently, theré are an infinite number of different
linear combinations possible. As a consequence, there are an infinite
number of possible controls, Eq. (9), which will bring the system from
the initial state to the final state in N sampling periods.
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We want to single out, from the infinite number of possible controls,
the one which consumes minimum energy, i.e.,

N N

E = E: Im(k)l2 = }: a§>= minimum (10)

k=1 k=1

This case has great practical importance due to the following facts. First,
the constraint imposed by Eq. (10) restrains the larger control magnitudes
and indulges the smaller ones, thus the system is less likely to saturate.
Secondly, the same mission is accomplished but with the least energy.
Thirdly, the procedure of obtaining the optimum control for minimum energy
is much simpler than those for saturated control and/or so-called minimum
fuel control®.

THE DERIVED MATRIX AND THE CANONICAL SPACE

We have seen in the last section that, for N>n, only n of the N
canonical vectors are independent. If we choose the first n vectors,

Iy» Iys ... I, as a basis the remaining N-n vectors can be written as
n
£n+j = z hi] Ii J = 19 2, “ ey N-n (]_]_)
i=1

In matrix form

By Byp oo By(non)
R _1 1" P2 e Paen)
[—rn+1’ Int2 -N] [—1’ AN —n] :
'
‘ 12)
h (
b1 a2 o Paen)
The nx(N-n) matrix
i1 Py h1(N-n)
h
By Boy - 2(N-n)
H = 1 (13)
[}
1
h
nl hn2 n(N-an




is named "derived matrix,"

ship between vectors r

which indicates the linear dependence relation-

.... r and or vl I
l, in bsl vect S_I‘n+1, In

Let R be an nxn matrix whose columns are vectors 51’
and let Q be an nx(N-n) matrix whose columns are vectors

ceee I Then Eq. (12) becomes

-

by iy

2 7777 Fn

5m4’%wr

Q=RH (14)
Further, let us define two vectors
.al-
)
a = i (15)
1
|
a
p 1
an+1
a
b = n+2 (16)

Using these notations, any state X in X may be put into the form

N-n
x= Z L+ Z i Tn+j
i=1 j=1
=Ra + Qb
=Ra + RHD (17

For future convenience, we form a new n-dimensional space C, called
"canonical space," whose unit vectors, 815 8o ----s B correspond to the
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canonical vectors, ;1, ;2, "‘Ln’ in the state space X. This amounts to
applying a linear transformation R.1 to Eq. (17), giving
c=a+Hb (18)

-1 . . . .
where ¢ = R "x is an n-vector in C corresponding to the state x in X.

Each component of c gives

N-

c; = a; + j{: an+j hij i=1, 2, ...., n (19)

=}

[
[

Eq. (18) expresses the system initial state in the canonical space
in terms of the control sequence. This equation is very useful for the
future development.

MINIMUM ENERGY RELATIONSHIP

a given control period NT with N>n, the control sequence is completely
fixed once N-n of the N control steps are chosen. Now, we want to choose
m(k) = -ay in such a way that Eq. (10) is satisfied.

For a given initial state ¢ in C (or, equivalently, X in X) and for

From Eq. (19)

N-n
a, =¢; - E: hij an+j i=1, ...., n (20)
j=1

The total control energy is

=
L}
1=
B
-
~
N
]
1=
B

2
hij an+j] + an+j (21)



} Minimizing Eq. (21) with respect to a4y e > A gives the following
1 R important relationship. (Appendix I)
n
gy T Z h, .a, j=1,2, ...., N-n (22)
X iji
i=1
; The matrix form of Eq. (22) is
b=H a (23)
where Ht is the transpose of H.
Combining Eqs. (18) and (23),
c=[t+am®]a. (24)
The optimum choice of a is therefore
a= [I+HHt]-1 c (25)

Egqs. (25) and (23) give the solution for the minimum energy control, which
show that the controller depends on the derived matrix H omnly. By
substituting these two equations into Eq. (21) the minimum energy is
(Appendix IT)

(26)

DESIGN PROCEDURE

The above results are summarized in

1. Given a linear, time-invariant,
period T, the transition matrix G(t) and

2, Compute the canonical vectors
r, = G(-iT)h(T) i
3. Write the matrices

the following as the design procedure.

dynamical system and the sampling
forcing vector h(t) are obtained.

(27)




R=[_r_1, Iy oo I ] (28)

-n
and
q = [—rn+1’ ..... , gN] (29)
4. Compute the derived matrix
-1
H=R Q (30)
5. Compute the control vector
(m(1) ] [ -a; ]
m(2) -a,
!
1 1 a
' !
n = ] = 'an = (31)
l
, “%n+1 b
I
: '
|
Lm(N) J -aN
where
-1 -1
3=[I+HHt] c=[I+HHt] R_1§ (32)
b= H a (33)
Fig. 1 shows the block diagram of the complete control system.
EXAMPLE
Consider the discrete control of a second order system having a
transfer function
F(s) = o2t = —1 (34)

T M(s)  s(st+l)



The sampling period is T = 1 second. It is desired to bring the system
from an initial state to the origin in N = 4 sampling periods.

Choosing state variables X, =Y and x, = y we have the vector differential
equation
% 0 1 Xy 0
= + m (35)
Xz 0 -1 X, 1
1. The solution of Eq. (35) is
xl(t) 1 1-e-t xl(O) e-t+t-l
= + m(t)
-t
xz(t) 0 e xz(O) 1 _e-t (36)
Thus, the transition matrix and forcing vector are, respectively,
—1 1-e-t ]
G(t) = (37)
0 e-t
- —d
é-t +t -1
h(t) = (38
| 1.t
2. The canonical vectors are
1 l-e" e !
x, = G(-iDh(T) = 6(-)h(1) =
0 et 1-e-1
or
1+ el‘1 - e
r, = i=1, 2, .... (39)
=i . ,
i i-1
e -e
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3, -0.7182  -3.6706 |

R:=k1’52]= (40)
1.7182  4.6706

[-11.6961 -33.5118 |

Q[ 5, ] “h
| 12.6961  34.5118 |

4 B -2.7183 -10.1074
H=R Q= (42)
3.7183 11.1074
5. 1.1 [0.457091  0.404748
[1 +HEH ] - (43)

0.404748 0.365635

£ 11 -1 0.48756  0.46983
[1 +HH ] R = (44)
0.42751  0.41427

" 0.48756  0.46982
(45)

[
it
1%

0.42751  0.41427

[-2.7183 3.7183
b= a (46)
-10.1074 11.1074

For any given initial state in state space X, Egs. (45) and (46) give
the control sequence which brings the system state to the origin in 4
sampling periods, For example, if the initial state is xl(O) = 1 and

x2(0) = 0 (corresponds to a unit step input), then the control sequence

is given by

a 0.48756

as= = [I + H Ht]-l R—¥§ = (47a)

) 0.42756
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a 0.2643

I
]
n
o
I
]

(47b)

4 -0.1795

It is interesting to compare the result to that of time-optimal non-
saturating control whose control sequence is given by

a 1.5820
a = =R 'x = (48)
a -0.5820

However, if saturation does occur, say, at m = 1, then the actual control
sequence for the time-optimal design becomes

a 1.000
a = = (49)
a -0.5820

and the system output becomes retarded, whereas the control sequence for
minimum energy control is not affected, at least for this example. Fig. 2
shows the three output response curves of the system for (a) minimum energy
design with N = 4, Egs. 47a and 47b; (b) ideal time-optimal design which

has N = 2, Eq. (48); and (c) retarded time-optimal design, Eq. (49). We
immediately see that although minimum energy design takes a longer time to
settle, it does give an error-free response. Fig. 3 gives the system inputs
for the three cases.

SOME REMARKS

A note on the choice of the number of sampling periods N would be in
order. One might think that a longer N could result in a smaller minimum
energy. This is indeed the case since the set of all input sequences of
length N+k contains input sequences of length N when the last k inputs are
set to zero. Thus any minimum energy sequence longer than N consumes, at
the most, only the minimum energy required for the sequence of length N.

As pointed out earlier and illustrated by the example, the minimum
energy design also tends to prevent the system from saturation. This
method is especially effective when N is large. In many practical systems,
where the time-optimal control is not essential, it is desirable to choose

12
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N large to avoid saturation. As a matter of fact, if N is not large enough
to prevent saturation in this minimum energy design then most likely any
other design technique with the same N will also be unable to prevent
saturation.

CONCLUSIONS

A procedure has been developed for designing the minimum energy error-
free discrete-data control for an n-th order continuous plant. The system
is required to reach a desired final state from a given initial state in
N sampling periods, with N>n. An important matrix, called derived matrix,
has been developed, which expresses the relationship between the canonical
vectors. The minimum energy controller has been shown to depend only on the
derived matrix. The design procedure is simple and easy to implement. The
importance of minimum energy control and the choice of the number of sampling
period, N, have been discussed. An example has been given to illustrate the
method.

An extension of the theory to time-weighted minimum energy control will
be given in a forthcoming paper. Further research is underway on the re-
lations between the number of sampling periods, the sampling period, the
initial condition and the minimum energy.
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APPENDICES

I. Derivation of Minimum Energy Relationship Eq. (23)

Eq. (21) is
n N-n N-n
E=Z c—Zh 2+Z 2 (a-1)
i 1j an+j] : 2ntij
i=1 j=1 j=1

Differentiating this equation with respect to an+p, withp =1, 2, ...,
N-n,

n N-n
oE _
S a = - 2 Z hip[ci - Z hij an+j]+ 2 an+p (A-2)
ntp . .
i=1 j=1

Equating Eq. (A-2) to zero and rearranging the terms,

n N-n n
Z hip ‘i T an+p + Z an+j Z hip hij (A-3)
i=1 j=1 i=1

The above equation can be expressed in its matrix form with the aid of
Egs. (13) and (16).

H c=b+H HD (A-4)
He¢=H a+H HD (A-5)

b=H a (A-6)

which is Eq. (23)

14



II. Derivation of Minimum Energy Eq. (26)

The total input energy is

N
E = E: a? = at a +
i a a
i=1
Using Eq. (A-6) and (18) gives
E=a a+bh
_ Lﬂt + Et
t
= £ 2

which is Eq. (26)

15
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m{k) = -a,

4___________.’4 to be

system

controlled

controller

a= [I +'HHt]'1R'1x

. <

b=Ha

Fig. 1 Block diagram of control system
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0.8

0.6

system output

0.4

0.0

1.0

0.0

system input

-1.0

(b) time-optimal N=2

Fig. 2 System output responses

“////,/(b) time-optimal N=2

_]—Z (a) minimum energy with N=4

T 2T 3T 4T 5T 6T 7T
————

saturation level

Fig. 3 System inputs
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